Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Mol Life Sci ; 81(1): 126, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38470510

RESUMO

Stress-induced intestinal epithelial injury (IEI) and a delay in repair in infancy are predisposing factors for refractory gut diseases in adulthood, such as irritable bowel syndrome (IBS). Hence, it is necessary to develop appropriate mitigation methods for mammals when experiencing early-life stress (ELS). Weaning, as we all know, is a vital procedure that all mammalian newborns, including humans, must go through. Maternal separation (MS) stress in infancy (regarded as weaning stress in animal science) is a commonly used ELS paradigm. Drinking silicon-rich alkaline mineral water (AMW) has a therapeutic effect on enteric disease, but the specific mechanisms involved have not been reported. Herein, we discover the molecular mechanism by which silicon-rich AMW repairs ELS-induced IEI by maintaining intestinal stem cell (ISC) proliferation and differentiation through the glucagon-like peptide (GLP)2-Wnt1 axis. Mechanistic study showed that silicon-rich AMW activates GLP2-dependent Wnt1/ß-catenin pathway, and drives ISC proliferation and differentiation by stimulating Lgr5+ ISC cell cycle passage through the G1-S-phase checkpoint, thereby maintaining intestinal epithelial regeneration and IEI repair. Using GLP2 antagonists (GLP23-33) and small interfering RNA (SiWnt1) in vitro, we found that the GLP2-Wnt1 axis is the target of silicon-rich AMW to promote intestinal epithelium regeneration. Therefore, silicon-rich AMW maintains intestinal epithelium regeneration through the GLP2-Wnt1 axis in piglets under ELS. Our research contributes to understanding the mechanism of silicon-rich AMW promoting gut epithelial regeneration and provides a new strategy for the alleviation of ELS-induced IEI.


Assuntos
Experiências Adversas da Infância , Águas Minerais , Recém-Nascido , Humanos , Animais , Suínos , Silício/metabolismo , Privação Materna , Mucosa Intestinal/metabolismo , Mamíferos
2.
Anim Nutr ; 16: 174-188, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38357573

RESUMO

Optimal intestinal health and functionality are essential for animal health and performance, and simultaneously intestinal nutrient transporters and intestinal peptides are also involved in appetite and feed intake control mechanisms. Given the potential of essential oil (EO) in improving animal performance and improving feed palatability, we hypothesized that dietary supplementation of cinnamaldehyde and carvacrol could improve performance and appetite of nursery pigs by modulating intestinal health and microbiota. Cinnamaldehyde (100 mg/kg), carvacrol (100 mg/kg), and their mixtures (including 50 mg/kg cinnamaldehyde and 50 mg/kg carvacrol) were supplemented into the diets of 240 nursery pigs for 42 d, and data related to performance were measured. Thereafter, the influence of EO on intestinal health, appetite and gut microbiota and their correlations were explored. EO supplementation increased (P < 0.05) the body weight, average daily gain (ADG) and average daily feed intake (ADFI) of piglets, and reduced (P < 0.05) diarrhea rates in nursery pigs. Furthermore, EO increased (P < 0.05) the intestinal absorption area and the abundance of tight junction proteins, and decreased (P < 0.05) intestinal permeability and local inflammation. In terms of intestinal development and the mucus barrier, EO promoted intestinal development and increased (P < 0.05) the number of goblet cells. Additionally, we found that piglets in the EO-supplemented group had upregulated (P < 0.05) levels of transporters and digestive enzymes in the intestine, which were significantly associated with daily gain and feed utilization. In addition, EO supplementation somewhat improved appetite in nursery pigs, increased the diversity of the gut microbiome and the abundance of beneficial bacteria, and there was a correlation between altered bacterial structure and appetite-related hormones. These findings indicate that EO is effective in promoting growth performance and nutrient absorption as well as in regulating appetite by improving intestinal health and bacterial structure.

3.
Porcine Health Manag ; 9(1): 24, 2023 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-37221604

RESUMO

BACKGROUND: Stress, herd transfer, and food changes experienced by nursery and fattening pigs can lead to reduced performance, reduced digestion and absorption, and impaired intestinal health. Given the role of essential oils in relieving stress and improving animal welfare, we hypothesized that essential oils may improve pig performance via promoting gut health and gut homeostasis laid by EOs supplementation during nursery continuously impacts performance in fattening pigs. RESULTS: A total of 100 piglets (Landrace × Large White; weighted 8.08 ± 0.34 kg, weaned at d 28) were randomly selected and divided into 2 treatments: (1) basal diet (Con); (2) basal diet supplement with 0.1% complex essential oils (CEO). The experiment period was 42 days. Then weaned piglets' growth performance and indications of intestinal health were assessed. Compared to the Con group, dietary supplemented CEO enhanced BW at 14 d (P < 0.05), and increased ADG during 1 ~ 14 d and 1 ~ 42 d (P < 0.05). Furthermore, CEO group had lower FCR during 1 ~ 42 d (P < 0.05). The CEO group also showed higher VH and VH:CD in duodenum and ileum (P < 0.05). Additionally, dietary CEO supplementation improved gut barrier function, as manifested by increased the mRNA expression of tight-junction protein and decreased serum DAO, ET and D-LA levels (P < 0.05). Finally, CEO supplementation alleviated gut inflammation, increased the activity of digestive enzymes. Importantly, piglets supplemented with CEOs during nursery also had better performance during fattening, suggesting that the establishment of intestinal health will also continuously affect subsequent digestion and absorption capacity. In short, dietary supplemented CEO improved performance and gut health via modulating increased intestine absorptive area, barrier integrity, digestive enzyme activity, and attenuating intestine inflammation. Meanwhile, essential oil supplementation during the nursery period also had a favorable effect on the performance of growing pigs. CONCLUSIONS: Therefore, the strategy of adding CEO to pig diets as a growth promoter and enhancing intestinal health is feasible.

4.
Pharmacol Res ; 187: 106580, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36436708

RESUMO

Stress or stress-induced intestinal disturbances, especially diarrhea, are the main triggers for inflammatory bowel disease and irritable bowel syndrome. Diarrhea and intestinal inflammatory disease afflict patients around the world, and it has become a huge burden on the global health care system. Drinking sodium metasilicate-based alkaline mineral water (SM-based AMW) exerts a potential therapeutic effect in gastrointestinal disorders, including gut inflammation, and diarrhea, but the supportive evidence on animal studies and mechanism involved remain unreported. The maternally separated (MS) piglet (Newly weaned piglet) is an excellent model to investigate the treatment of diarrhea in infant. This study aims to determine whether drinking SM-based AMW confers diarrhea resistance in maternally separated (MS) piglets under weaning stress and what the underlying mechanisms are involved. 240 newly weaned piglets were randomly divided into the Control group and the sodium metasilicate pentahydrate (SMP) group. A decreased diarrhea incidence was observed in SMP treatment piglets. The intestine injury and activated stress hormones (COR and ACTH) induced by weaning was alleviated by SM-based AMW. This may be related to the improvement of intestinal microflora structure and function by SMP, especially the increase of s_copri abundance. Meanwhile, SMP maintained the integrity of the duodenal mucus barrier in MS piglets. Importantly, by targeting NF-κB inhibition via the microbiota-gut interaction, SM-based AMW alleviated intestinal inflammation, maintained fluid homeostasis by modulating aquaporins and fluid transporter expression, and enhanced barrier integrity by suppressing MLCK/p-MLC signaling. Therefore, drinking metasilicate-based alkaline mineral water confers diarrhea resistance in MS piglets via the microbiota-gut interaction.


Assuntos
Diarreia , Microbioma Gastrointestinal , Águas Minerais , Silicatos , Animais , Diarreia/terapia , Inflamação/terapia , Águas Minerais/uso terapêutico , Suínos , Silicatos/uso terapêutico
5.
J Adv Res ; 52: 29-43, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-36539076

RESUMO

INTRODUCTION: Diarrhea has the fourth-highest mortality rate of all diseases and causes a large number of infant deaths each year. The maternally separated (MS) piglet (newly weaned piglet) is an excellent model to investigate the treatment of diarrhea in infants. Drinking alkaline mineral water has the potential to be therapeutic in gastrointestinal disorders, particularly diarrhea, but the supporting evidence from system studies and the mechanisms involved have yet to be reported. OBJECTIVES: This study aims to determine whether drinking alkaline mineral water confers diarrhea resistance in MS piglets under weaning stress and what the fundamental mechanisms involved are. METHODS: MS piglets were used to create a stress-induced intestinal disorder-diarrhea susceptibility model. A total of 240 MS piglets were randomly divided into two groups (6 pens/group and 20 piglets/pen). IPEC-J2 cell line was used for in vitro evaluation. An alkaline mineral complex (AMC) water was employed, and its effect on the hypothalamus-pituitary-adrenocortical (HPA) axis, gut microbes, gut morphology, and intestinal epithelial cell (IEC) proliferation and differentiation were investigated using a variety of experimental methodology. RESULTS: AMC water reduced diarrhea rate in MS piglets by inhibiting the HPA axis, ameliorating gut microbiota structure, and stimulating IEC proliferation and differentiation. Apparently, the brain-microbe-gut axis is linked with AMC water conferring diarrhea resistance in piglets. Mechanistically, AMC water decreased stress hormones (COR and Hpt) secretion by suppressing HPA axis, which then increased the abundance of beneficial gut microbes; accordingly, maintained the proliferation of IEC and promoted the differentiation of intestinal stem cells (ISC) into goblet cell and Paneth cell by activating the Wnt/ß-catenin signaling pathway. In the absence of gut microbiota (in vitro), AMC activated the LPS-induced Wnt/ß-catenin signaling inhibition in IPEC-J2 cells and significantly increased the number of Lgr5 + cells, whereas had no effect on IPEC-J2 differentiation. CONCLUSION: Drinking alkaline mineral water confers diarrhea resistance in MS piglets by maintaining intestinal epithelial regeneration via the brain-microbe-gut axis; thus, this study provides a potential prevention strategy for young mammals at risk of diarrhea.


Assuntos
Mucosa Intestinal , Águas Minerais , Animais , Humanos , Suínos , Mucosa Intestinal/metabolismo , Sistema Hipotálamo-Hipofisário/metabolismo , Sistema Hipófise-Suprarrenal/metabolismo , Diarreia/metabolismo , Diarreia/prevenção & controle , Minerais/metabolismo , Regeneração , Mamíferos
6.
J Anim Sci ; 100(10)2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-35913841

RESUMO

The purpose of the present study was to investigate the effects of drinking water alkaline mineral complex (AMC) supplementation on growth performance, intestinal morphology, inflammatory response, immunity, antioxidant defense system, and barrier functions in weaned piglets. In a 15-d trial, 240 weaned piglets (9.35 ± 0.86 kg) at 28 d of age (large white × landrace × Duroc) were randomly divided into two groups: the control (Con) group and the AMC group. Drinking water AMC supplementation improved (P < 0.01) final body weight (BW) and average daily gain (ADG) in weaned piglets compared to the Con group. Importantly, AMC reduced (P < 0.01) the feed-to-gain (F:G) ratio. AMC water improved the physical health conditions of piglets under weaning stress, as reflected by the decreased (P < 0.05) hair score and conjunctival score. Moreover, there was no significant (P > 0.05) difference in relatively small intestinal length, organ (liver, spleen, and kidney) indices, or gastrointestinal pH value in weaned piglets between the two groups. Of note, AMC significantly promoted the microvilli numbers in the small intestine and effectively ameliorated the gut morphology damage induced by weaning stress, as evidenced by the increased (P < 0.05) villous height (VH) and ratio of VH to crypt depth. Additionally, AMC lessened the levels of lipopolysaccharide (LPS, P < 0.01) and the contents of IL1ß (P<0.05), and TNF-α (P<0.05) in the weaned piglet small intestine. Conversely, the gut immune barrier marker, secretory immunoglobulin A (sIgA) levels in serum and small intestine mucosa were elevated after AMC water treatment (P < 0.01). Furthermore, AMC elevated the antioxidant mRNA levels of (P < 0.05) SOD 1-2, (P < 0.01) CAT, and (P < 0.01) GPX 1-2 in the small intestine. Likewise, the mRNA levels of the small intestine tight junction factors Occludin (P < 0.01), ZO-1 (P < 0.05), Claudin 2 (P < 0.01), and Claudin 5 (P<0.01) in the AMC treatment group were notably higher than those in the Con group. In conclusion, drinking water AMC supplementation has an accelerative effect on growth performance by elevating gut health by improving intestinal morphology, the inflammatory response, the antioxidant defense system, and barrier function in weaned piglets.


The piglet suffers vital physiological, environmental, and social challenges when it is weaned from the sow that can predispose the piglet to subsequent diseases and other production losses, and these challenges are responsible for serious economic losses to the swine industry. Weaning stress induces intestinal injury, decreased immunity, and digestive system dysfunction, which then reduces feed intake and inhibits the growth performance of piglets. It is well known that alternatives to antibiotics for preventing weaning stress in weaned farm animals are sorely needed. The biologically beneficial effects of alkaline mineral water are widely reported. Alkaline mineral complex (AMC), as an immunomodulator, is considered to have antistress effects in the swine industry. In addition, treatment through drinking water is considered to be an efficient and low-cost feasible disease control strategy. Drinking water AMC supplementation is expected to exert health benefits in pigs; however, the responses of weaned piglets to water supplemented with AMC have not been fully explored. Thus, this study explored the effects of drinking water AMC supplementation on growth performance and gut health in weaned piglets. Our results showed that AMC water supplementation conspicuously enhanced the growth performance by improving the gut health.


Assuntos
Antioxidantes , Água Potável , Animais , Suínos , Desmame , Antioxidantes/farmacologia , Lipopolissacarídeos/farmacologia , Ocludina , Suplementos Nutricionais , Claudina-2 , Claudina-5/farmacologia , Fator de Necrose Tumoral alfa , Mucosa Intestinal , Minerais/farmacologia , RNA Mensageiro , Imunoglobulina A Secretora/farmacologia , Superóxido Dismutase
7.
J Anim Sci ; 100(9)2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35866893

RESUMO

In the modern poultry industry, newly hatched chicks are unavoidably transported from the hatching to the rearing foster. Stress caused by multiple physical and psychological stressors during transportation is particularly harmful to the liver. Astragalus polysaccharide (APS) possesses multiple benefits against hepatic metabolic disorders. Given that transport stress could disturb hepatic glucolipid metabolism and the role of APS in metabolic regulation, we speculated that APS could antagonize transport stress-induced disorder of hepatic glucolipid metabolism. Firstly, newly hatched chicks were transported for 0, 2, 4, and 8 h, respectively. Subsequently, to further investigate the effects of APS on transport stress-induced hepatic glucolipid metabolism disturbance, chicks were pretreated with water or APS and then subjected to transport treatment. Our study suggested that APS could relieve transport stress-induced lipid deposition in liver. Meanwhile, transport stress also induced disturbances in glucose metabolism, reflected by augmented mRNA expression of key molecules in gluconeogenesis and glycogenolysis. Surprisingly, APS could simultaneously alleviate these alterations via peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC-1α)/Sirtuin 1 (SIRT1)/AMP-activated protein kinase (AMPK) pathway. Moreover, APS treatment regulated the level of peroxisome proliferator-activated receptor alpha (PPARα) and peroxisome proliferator-activated receptor gamma (PPARγ), thereby alleviating transport stress-induced alterations of VLDL synthesis, cholesterol metabolism, lipid oxidation, synthesis, and transport-related molecules. These findings indicated that APS could prevent the potential against transport stress-induced hepatic glucolipid metabolism disorders via PGC-1α/SIRT1/AMPK/PPARα/PPARγ signaling system.


In the modern poultry industry, newly hatched chicks are unavoidably transported from the hatching to the rearing foster. During transportation, chicks are frequently subjected to various physical and psychological stressors, which can lead to alterations in blood composition, hormones, metabolites, enzymes, and behavior. These alterations adversely affect animal health and welfare. Stress caused by transportation is especially harmful to liver, which can cause significant effects on liver function, and disturb hepatic lipid metabolism and glucose metabolic. The current study demonstrated that Astragalus polysaccharide (APS) possesses multiple benefits against hepatic metabolic disorders. Administration of APS to chicks before transport could prevent transport-induced stress and hepatic glucolipid metabolism disorders.


Assuntos
Proteínas Quinases Ativadas por AMP , PPAR alfa , Proteínas Quinases Ativadas por AMP/genética , Animais , Colesterol , Regulação da Expressão Gênica , Glucose/metabolismo , Metabolismo dos Lipídeos , Lipídeos/farmacologia , Fígado/metabolismo , PPAR alfa/metabolismo , PPAR gama/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Polissacarídeos/metabolismo , RNA Mensageiro/metabolismo , Sirtuína 1/genética , Sirtuína 1/metabolismo , Sirtuína 1/farmacologia , Estresse Fisiológico , Fatores de Transcrição/genética , Água/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...